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NOMENCLATURE

A Cockpit wall area (m)

CP Specific heat of air (kJ/kg)

h, External skin convective heat transfer coefficient (W/mt. 'C)

hr Linearised thermal radiation heat transfer coefficient (W/m 2 . C)

h, Cockpit wall heat transfer coefficient (cabin air-external skin surface)
(W/m 2 -. C)

mr Cooling air mass flow (g/sec)

OAT Outside air temperature (°C)

Qt- Heat removed by cooling air (W)

Qe Avionics heating load (W)

Q8 Solar radiation transmitted through transparencies (W)

QW Heat transfer through cockpit walls into cabin (W)

Ta Outside air temperature ("C)

TbI Temperature of a 150 mm black globe (°C)

Te Effective mean temperature of air surrounding crew (°C)

Tin Cooling air inlet temperature (°C)

Tout Cooling air temperature at outlet from cockpit (AC)

T. Fuselage external skin temperature (CC)

WBGT Wet bulb globe temperature (°C)

STAY Differential between ambient temperature and effective sky temperature ('C)

.
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I. INTRODUCTION

High temperatures attained by a parked aircraft exposed to high air temperatures and solar
radiation loads are of interest for several reasons:

(a) the effect on crew performance of high cockpit temperatures;

(b) the difficulty of servicing aircraft components with high temperatures-

(c) the deteriorating effect on rubber seals, etc.

The cabin environment is of particular interest because aircrew are frequently required to
spend long periods, in a state of combat readiness, in an aircraft prior to take-off; high cabin
temperatures cause dehydration and heat stress. Whilst heat balance models for aircraft in flight
have been formulated (Hughes 1968), there are no experimental evaluations known to the
authors, of the cabin heat loads on a parked fighter aircraft.

This report describes tests which were carried out to measure skin temperatures (%ings and
fuselage), and temperatures within the cockpit, of a parked Sabre Mk 31 aircraft. Measurements
were recorded during the summer period in Melbourne. The aircraft was exposed to full solar
radiation, but cockpit conditions were varied by utilising both cooling air and external overhead
shading.

From these results a heat balance model of the cabin has been formulated to enable predic-
tion of the cabin environmental conditions.

2. TEST SCHEDULE AND EQUIPMENT

The test aircraft was a North American Sabre M k 31 (Figure i). The aircraft was parked on a
concrete surface, close to a large hanger. Because of the proximity of buildings. the winds
generally were unsteady and of varying direction. No shading of the aircraft was afforded by the
buildings other than in the early morning. The test programme was undertaken in two distinct
stages with a considerable time lapse between them. These stages were as follows:

(a) The aircraft was parked and exposed to direct solar radiation with the canopy closcd.
The aircraft and surroundings were instrumented for temperature, radiation and air
velocity measurements. Temperatures on the aircraft were measured at the locations
shown in Figure 2. and listed in detail in Appendix I.

(h) The aircraft was parked and either shaded with no ventilation (Fig. 3), or supplied with
cooling air in the shaded and unshaded configurations.

A simpler data recording system was used for the latter tests (b. as the equipment used in
the first series of tests (a) was no longer available. Air temperatures for series (h) tests were
measured at four locations in the cockpit, and cooling air mass flow, outside air temperature.
wind speed and direction were recorded. High pressure air was supplied to the existing aircraft
cold air unit (a turbofan system) A hich then supplied cooling air through the existing distribution
system. Cooling air mass flow was approximately 0- 1 kg's: the cabin inlet air temperature was
maintained above 0 C to obviate freezing of condensed water.

3. TEST RESULTS AND DISCUSSION

3.1 Cockpit Temperatures with Canopy Closed and Unshaded

Full details of the test results for the aircraft parked with the canopy closed and unshaded.
are given in Appendix 2. Figure 4 shows a typical graph of incident solar radiation for a cloud-
less day. Examples of several of the temperatures from Table 2.2 (Appendix 2) are given in
Table I.



TABLE I

Cockpit Temperatures in a Nou-veatllated, Unshaded Aircraft

Time
Position

1200 h 1500 h

Ejector frame headrest 64 C 78-C
Footwell, stbd side 41 C 54-C
150 mm black globe at head level* 49'C 58-C
Outside air temperature 26'C 30 C

The black globe temperature is measured at the centre of a thin copper
sphere, with a matt black surface.

As indicated by Table I. the metal temperatures (ejector frame headrest) can be very high,
particularly after the aircraft has been heat-soaking for some time. At 1200 h the ejector frame
was 38'C above outside air temperature: at 1500 h it was 48,C above outside air temperature.
The influence of heat-soaking can also be seen in the differential between the black globe tem-
perature (upper cockpit region) and the footwell air temperature- at 1200 h this differential was
8'C, decreasing to 4 C at 1500 h.

3.2 Cockpit Temperatures with Canopy Closed and Externally Shaded

Cockpit temperatures of the shaded aircraft with closed canopy (Fig. 3) were taken just
prior to supplying cooling air to the cockpit. Just one reading per day was taken, usually after
1200 h: the aircraft having been shaded since early morning. The results are given in Table 2.
and are also compared here with the earlier results (Appendix 2) for the unshaded aircraft. These
tests emphasise the obvious advantage of external shading, cockpit black globe temperatures
being up to 23C lower than for the unshaded state.

TABLE 2

Effect of External Shade on Cockpit Temperatures

Aircraft shaded, Aircraft not shaded,
Position cockpit unventilated cockpit unventilated

26.3.79 29.3.79 16.3.79 20.3.79

Head level 25.5 C 30-OC 42.0 C 47.0 C
Cockpit rear 26OC 31.0C 36.0 C 40.0 C
150mm black globe 27.5 C 30'0^C 48.0 C 53.0 C
Outside air temperature 28.5 C 29.0 C 27.5 C 29.0 C

3.3 Cockpit Temperatures and Cooling Requirements with Cooling Air Supplied

The complete results for the tests with cooling air are recorded in Appendix 3: Tables 3.1
and 3.2 apply to the unshaded aircraft, and Tables 3.3 and 3.4 to the shaded aircraft. These
results are summarised graphically in Figures 5 to 8. where temperatures and cooling effects are
plotted against time.
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FIG. 1 TWO VIEWS OF THE INSTRUMENTED TEST AIRCRAFT -
NORTH AMERICAN SABRE MK 31
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FIG. 3 TEST AIRCRAFT WITH CANOPY SHADING
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FIG. 4 INCIDENT SOLAR RADIATION MEASURED BY SOLARIMETER
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Unshaded aircraft
Date - 16/3/79
Wind velocity - 3.0 m/s

S_ Cloud - nil
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FIG. 5 COCKPIT TEMPERATURES AND COOLING EFFECT
FOR AN UNSHADED AIRCRAFT
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Unshaded aircraft
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FIG. 6 COCKPIT TEMPERATURES AND COOLING EFFECT
FOR AN UNSHADED AIRCRAFT
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Shaded aircraft
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FIG. 7 COCKPIT TEMPERATURES AND COOLING EFFECT FOR A SHADED AIRCRAFT
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Shaded aircraft
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The time taken for cabin temperatures to stabilise after the introduction of cooling air.
varied from 0.5 h with external shading, to 1.0 h for the unshaded cockpit. The steady-state
cabin cooling requirement without external shade was 187 kW (outside air temperature 27 C,
mean cockpit air temperature 9.7'C). For the shaded case the cooling requirement decreased
to I .04 kW (outside air temperature 29CC, mean cockpit air temperature 9.4-C).

3.4 Summary of Experimental Results

As these tests were carried out only in Melbourne the results would be more extreme in the
hotter climates of Australia. However, even with moderate outside air temperatures in the region
of 30 C, the cockpit air temperatures attained would degrade crew performance. A summary of
results, given in Table 3, shows the obvious benefits gained b) supplying cooling air and shading
the cabin area.

TABLE 3

Cooling Requirements and Cockpit Temperatures of a Shaded and Unshaded Aircraft

Stabilised Outside Black Head region Wind
Comments cooling air globe cockpit speed

requirement temperature temperature temperature
(kW) (IC) (IC) ('C) (m/s)

No cooling air, - 300 57.0 51-0" 0.1
unshaded - 20.0 41.0 35.0* 0-6

Cooling air, 1•87 27.0 30.5 24.5* 3.0
unshaded 1.95 29.0 36.0 30.0* 2.8

Cooling air, 1.04 29.0 14-2 14.2t 1.5
shaded 1•18 29.0 13.0 13.Ot 2.5

• Taken as 6 C less than black globe temperature (after Rebbechi 1980).

t Taken as equal to black globe temperature (aircra,"t shaded).

4. HEAT BALANCE FOR THE COCKPIT OF A PARKED AIRCRAFT

The cockpit heat balance equation for a parked aircraft can be expressed by:

where Q,. = heat removed by cooling air (W).

Q. = heat transfer through cockpit walls into cabin (W),

Q. = solar radiation transmitted through transparencies (W).

Also,

Q. = Ah.(T. - Tm). (2)

where T, = fuselage external skin temperature (C),

Tm= cockpit mean air temperature (C).

A = cockpit wall area (mt),

hw = cockpit wall heat transfer coefficient (cabin-air to external skin surface)
(W/m. C).
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and
Qn = Ah,.(T - T.) - hr(T. 8T- 1" - T.). (3)

where h, = external skin convective heat transfer coefficient (Wim2 C).

T. = outside air temperature ( C).

hr = linearised thermal radiation heat transfer coefficient* ( W/m 2 C).

8T kl = difference between ambient temperature and effective sky temperature ('C).

Equations (2) and (3) refer to the heat balance of the fuselage skin surface: the effect of solar
heating of the fuselage skin is neglected, as the projected area of the fuselage side is very small
when the sun is overhead.

Combining Equations (2) and (3) to eliminate T. results in:

pw = Ahw[(h. hr)(Ta - T) -8 Tk)lhr]/[h, - hr - h.] (4)

The results of aircraft tests with cooling air (Appendix 3) are summarised in Table 4.

TABLE 4

Summary of Cooled-cockpit Tests

Outside Mean Cooling Wind
Date Test air cabin requirement velocity

conditions temperature temperature
(C) (C) (kW) (m/s)

16.3.79 Unshaded, no cloud 27.0 9.7 1-85 3-0
20.3.79 Unshaded, no cloud 29-0 14.9 1.95 2.8
26.3.79 Shaded, no cloud 29.0 9.4 1.03 I•5
29.3.79 Shaded, no cloud 29.0 7-5 1.18 2.5

The external convective heat transfer coefficient h,., as a function of wind speed. can bx
found from Figure 9. The heat transfer coefficient h. can be evaluated from the shaded aircraft
test results, noting that because of canopy shading, STkV is taken to be equal to zero. The cockpii
wall area (including transparencies) in direct contact with the outside air is 4.64 m2 (Conwa.
and Jenkins 1951). To evaluate Q,, the following procedure is used:

(i) Find h. from an analysis of the results for a shaded aircraft, where Q. - 0. Hence
Q,, = Q. (Equation (I)), and h. can then be evaluated by Equation (4).

(ii) Substitute the mean value of h. found by (i) above, into Equation (4) using now the
results for an unshaded aircraft, noting that for a clear sky, &Tk = - 12 C (Duffle and
Beckman 1974). The value of Q. then found is substituted into Equation (I) to evaluate
Q.

The resulting values of h. and Q are given in Table 5.

Radiation exchange between surfaces properly depends on the fourth power of the absolute
temperatures of the surfaces; however, where the temperature differences are small, a first power
radiation coefficient has an accuracy comparable with the other quantities such as h,.

12
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FIG.9 CONVECTIVE HEAT TRANSFER COEFFICIENT VS AIR VELOCITY
(From Torgeson et al (1955), and Barnes and O'Brien (1970))
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TABLE 5

Results for h. and Q

Test Date hw Q.
conditions (Wim2 . C) (W)

Unshaded, no cloud 16.3.79 1050
Unshaded, no cloud 20.3.79 1300
Shaded, no cloud 26.3.79 2630
Shaded, no cloud 29.3.79 220
Averaged values 24.0 1180

Substitution of these results into Equation (I) then gives:

Q, = 4.64hw[(Ta - Tm)(h, + hr) -t- 6TyhrJ/[hr " hr h,] -. 1180. (5)

Using then the values hm = 24.0 W/m 2" C (Table 5), hr = 6-0 W/m . C (linearised radiation
exchange coefficient for temperatures in the region of 30 C), and h,. = 20 W/m 2 . C (a function
of wind speed-Fig. 9), Equation (5) can now be simplified for cloudless day. aircraft unshaded.
light wind (3 m/s) conditions, to

Q,. = 57.9(T - Tm) - 1020. (6)

For an optimum air distribution scheme, it has been stated by Hughes (1968) that the
effective mean temperature, T i. of the air immediately surrounding the crew, is given by

T,. - Tin = 0'75(To.1 , Tin). (7)

where T in = cooling air inlet temperature ('C).

Tout = cooling air temperature at outlet from the cockpit (C).

For the Sabre cockpit test, however, T, was most likely higher than the value given by Equation
(7). Insufficient measurements of cockpit temperature were taken to establish an accurate value
for T,.. however, the results in Appendix 4 show that the head level temperatures are greater
than the outlet temperatures. This indicates a very poor air distribution, probably because the
side outlets (located at chest level) were closed for these tests, and only one inlet (located in the
forward part of the cockpit) was fitted for admission of cooling air. The assumption will be made
here that. for the Sabre cockpit, with side outlets open. T,, will be equal to T,,ut.
Then, as

Tm 05(Tn + Tot.,), (8)
and

Q= mrCp(Toot - Tin). (9)

where mt = cooling air mass flos (g/s).

Cp = specific heat of air (kJ/kg).

and combining Equations (6). (8), and (9). and noting that Cp t 1 .0 kJ/kg.

Tou = [57.9T& + Ti(mr - 29.0) - 1020]/[mr + 29-01. (10)

If T = T u, we then have a solution for the crew air temperature, as a function of outside
air temperature. cooling air inlet temperature, and mass flow. Equation (10) applies to an un-
shaded aircraft parked in full solar radiation, with light winds.

The cabin heat balance analysis undertaken here is considerably simplified, since no account
has been taken of factors such as the variation in fuselage conductivity between canopy walls.
The validity of this analysis is restricted then to similar conditions to those encountered during
the tests described. This is a reasonable limitation, for if cooling is to be provided for a parked
aircraft, then the design of the cooling system would be required to cope with the worst con-
ditions, namely full solar radiation, and high outside air temperatures.

14



5. DISCUSSION

5.1 The Uncooled Aircraft

As would be expected, very high cabin temperatures were reached with the canopy com-
pletely closed. Black globe temperatures of 60 C and ejector frame temperatures of 76 C were
recorded for an outside air tempeature of 29 C.

Such high temperatures would rapidly lead to heat stress ofthe aircrew. For the I, extreme*
high humidity levels encountered in Australia of 0-025 kg moisture/kg dry air (see Rebbechi
1980). and an OAT of 29 C. the cockpit WBGTt would be 41.5 C. This high WBGT would
certainly cause a very rapid decrement in mental and perceptual performance, eventually causing
collapse of the aircrew. That high temperature levels are encountered in this situation is not a
recent discovery, as shown by the study of the effects of cabin temperatures on pilot performance
in RAAF fighter aircraft, by Cameron and Cumming (1963).

However, there now exists general agreement that a WBGT of greater than 28 C will result
in a decrement in crew performance (see, for example, Hendy and Clark 1979). For an aircraft
parked in full solar radiation, this WBGT would be exceeded in the cockpit of an uncooled air-
craft even for the relatively co/d outside air temperature of 15 C.'+

During all of these tests the canopy was completely closed. Opening the canopy could be
expected to bring about a reduction in cockpit temperature. Harrison and Higenbottam (1977).
in comparative tests on a parked. uncooled aircraft, found that the cockpit temperature. with
the canopy partially open, depended on wind direction. When the wind was blowing in a longi-
tudinal direction, the cockpit black globe temperature exceeded the outside air temperature by
20-25-C. Thus for this unfavourable wind direction, little relief is afforded to the crew by a partial
opening of the canopy.

5.2 The Cooled Aircraft

From the analysis of the cockpit heat balance of a parked Sabre aircraft it was found that
the effective mean air temperature T, around the pilot, could be expressed by

Te = [57-9Ta - Tin(mr - 29-0) - 1020]/[,nf - 29.0]. (II)

where Ta = outside air temperature ( C),

Tin = cabin inlet air temperature ( C),

mf = cooling air mass flow (kg/s).

Equation (II) applies to the aircraft parked in full solar radiation, with the canopy closed.
If an avionic heating load Q, were also present. then Equation (II) becomes

T, = [57.9T& - Tin(mf - 29"0) - 1020 • Qe]/[mI - 29-0]. (12)

To extrapolate Equation (12) to the uncooled aircraft case (mr = 0). it is necessary to note
the relationship between Te and Tin (Equation (7)), where for the uncooled aircraft, Tow = Tin,
and T,, = Tin. Hence, from Equation (12). substituting mnr = 0 and T, = Tin,

T7. = T 5  17-6 t- Q,/58. (13)

From this equation the cockpit black globe temperature (The) for an un'ooled aircraft can then
be derived if it is assumed that Ttg is 6 C above cockpit air temperature (see footnote p. II).
From Equation (13). then, for the uncooled aircraft in the absence of cockpit avionic heating.

T,, = T - 23.6. (14)

• The I ",, extreme is that temperature (or humidity) that is equalled or surpassed for 1 1%, of
the time (7.5 h) in the most severe month.

t The Wet Bulb Globe Temperature (WBGT) is a widely used prediction of heat stress.
which combines the effects of air temperature and moisture content, radiant heat loading and
wind velocity on heat stress. its use is further discussed by Rebbechi (1980).

Assuming saturated outside air at 13 C (moisture content 0.0105 kg/kg).

Is
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This is in general agreement with the experimental results. %here black globe temperatures of
between 20 and 30 C above ambient were measured.

The effect of cockpit temperatures of avionic heat loads can be considerable. For example.
Equation (13) shows that an internal heat load of 1000 W would raise the cockpit temperature
by 17 C. This result accords closely with that of Harrison and Higenbottam (1977).

6. CONCLUSIONS

Severe thermal stress on crew members will result from them beirg seated in the closed or
nearly closed cockpit of an uncooled fighter-type aircraft. The addition of heat loads from
avionic equipment in the cockpit, greatly worsens an already intolerable enironment.

A heat balance of the cockpit has been formulated to facilitate computation of the cooling
air requirements to bring about an acceptable cabin environment. Where cooling air supplies
are not available, shading of the cockpit area is essential to minimise aircrew% heat stress, and also
to maintain metal temperatures at a sufficiently low lesel to permit servicing of the aircraft.

Although these tests were carried out on a Sabre aircraft, the results bhould be generally
applicable to other fighter type aircraft, having overhead transparencies.

16
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APPENDIX I

Aircraft Instrumentation

Position Location

Temperature I Footwell-port side
sensors 2 Aircraft-near gunsight

3 Footwell-starboard side
4 Ejector frame-top, behind headrest
5 Under canopy 0.6 m aft of headrest
6 Port armrest
7 Starboard armrest
8 Air temperature [box with circulating fan in starboard footwell]
9 Starboard, upper wing. outboard (2 m from fuselage]
10 Starboard, upper wing, inboard [I m from fuselage]
II Port, lower wing
12 Black globe temperature
13 Port. upper wing, inboard [I m from fuselage]
14 Upper fuselage aft (4 m from pilot]
Is Upper fuselage aft [2 m from pilot]
16 Upper fuselage front [matt black painted section]

Meteorological 17 Net radiometer over aircraft wing upper surface
instrumentation 18 Net radiometer over ground

19 Wind direction (degrees)
20 Wind speed
21 Outside air temperature (Stephenson's Screen)
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APPENDIX 2

Test Recthis for Uacdled Akrrdt

TABLE 2.1

Temperatures and Environmental Condiions

Unshaded cockpit, no cooling air-2...76

Time 1h)

No, Parameter and position - -h)

1100 1130 1200 1230 1300 1330 1400 1430 1500 1530

Temperatures
I Footwell-port side (air) (C) 9 9 20 13 14 Is - 15 -

2 Aircraft-near gunsight (surface) ('C) 43 51 51 54 56 61 59 60 61 3
3 Footwell-starboard side (air) (C) 21 27 29 35 38 40 41 40 41 41
4 Ejector frame-top, behind headrest (surface) (C) 52 56 58 61 63 64 65 66 67 66
5 Under canopy 0-6 m aft of headrest (air) IC) 36 39 40 42 44 45 45 45 43 42
6 Port armrest (surface) (C) 45 48 50 50 50 51 51 52 52 48
7 Starboard armrest (surface) I C) 33 36 40 41 45 50 54 55 56 55

h Air temperature box [in starboard footwell) lair) (C) 22 25 28 29 32 34 36 38 39 40
9 Starboard, upper wing. outboard (surface) I C) 39 40 42 44 45 46 45 46 46 44
oI Starboard. upper wing. inboard (surface) Cl 38 42 43 46 48 49 48 47 47 46

I Port. lower wing (surface) (C) 24 25 25 26 27 27 27 27 28 27
12 Black globe in cockpit (air) ) C) 36 39 40 41 43 44 44 45 45 45
13 Port. upper wing . inboard (surface) I C1 32 38 41 43 45 47 48 47 48 47
14 Upper fuselage. 3 m aft of pilot (surface) IC) 35 36 37 39 40 41 42 42 42 41
Is Upper fuselage 2 mn aft of pilot (surface) 1 36 36 36 37 40 39 36 39 39 38

I6 Upper fuselage. front (surface) C 47 49 52 57 58 61 61 61 61 60
Rudlaioaii

17 Net radiation [aircraft] (W. m
-
) 690 750 750 750 810 810 810 110 810 750

18 Net radiation [ground) (W/m
-
) 570 570 630 630 630 630 690 690 690 630

19 RWind dirertion (I ) Varying between (60' and 180"
20 Winidspeed (mns) 0.43 0 06 0 02 0-23 020 0 06 0.02 0.00 0-06 006

Temnperature
21 Outside air temperature (C) 14 14 16 14 14 17 19 20 20 21

TABLE 2.2

Temperatures and Environmental Conditions

Unshaded cockpit, no cooling air-7.2.76

Time h)
No. Parameter and position

1100 1130 1200 1230 1300 1330 1400 1430 1500 1530

Temperuiures
I Footwell -port side (air) (C) 35 38 38 40 40 42 46 48 50 51
2 Aircraft--near gunsight (surface) ('C) 52 57 58 62 65 69 73 73 73 74
3 Footwell--starboard side (air) ( C) 36 39 41 44 46 49 51 - 54 54
4 Eiector frame- top, behind headrest (surface) C) 57 60 64 68 70 73 76 -- 78 78
5 Under canopy 06 m aft of headrest (air) ('Cl 43 46 49 54 57 59 62 - 58 55
6 Port armrest (surface) (C) 51 56 60 62 62 64 65 - 65 61
7 Starboard armrest Isurface)) C) 37 41 45 48 52 58 63 - 66 65
a Air temperature box [in starboard footwell] (air) (C) 28 30 34 36 39 40 44 - 47 50
9 Starboard. upper wing. outboard (surface) ('C) 42 46 48 50 53 56 59 55 57 55

(0 Starboard, upper wing. inboard (surface)) IC) 46 50 51 55 5) 59 63 61 58 56
I I Port. lower wing (surface) ( C) 30 33 34 36 3" 39 40 40 39 38
12 Black globe in cockpit (air) (C) 43 46 49 52 55 57 60 60 58 56
13 Port. upper wing, inboard (surface) (C) 37 41 45 51 54 58 61 60 59 57
14 Upper fuselage 3 m aft of pilot (surface) ('C) 41 44 47 50 53 55 60 59 56 55
15 Upper fuselage 2 m aft of pilot (surface) ('C) 39 43 45 48 51 52 57 56 56 52
16 Upper fuselagc, fronl lurfacc) ) C) 49 53 56 60 64 67 71 75 75 74

Radian i
17 Net radiation (aircraft) )W/mt) 720 780 780 8 840 780 780 780 780 780
Is Net radiation [ground) IW/m

t
) 480 480 540 540 540 540 480 480 480 480

19 Wind direction (W ) Varying between IS0W and 270'
20 Wit 0speed(s 0- 0.,6 0-72 0.15 0-15 O. 0-05 0 075 0-55 054

Temperatures (221 outside air temperature (C) 23 25 26 2" 9 30 29 31 I 0i31



TAKIE 23

Temperatures and Enirontmenfal Cionditions

Unshaded cockpit, no cooling air-I 1.2.76

Time (h)
No. Parameter and position-T e s 1100 1130 1200 1230 1300 1330 1400 1430 1 W 15.10

Temperatures

I Footwell-port side (air) (QC) 14 18 is 26 30 33 35 36 36 37
2 Aircraft--near gunsight (surface) (C) 42 49 48 s0 49 56 56 57 54 56
3 Footwell-starboard side (air) (C) 32 34 36 38 40 40 41 41 41 41
4 Ejector frame-top, behind headrest (surface) ('C) 46 51 54 57 57 60 62 64 64 65
5 Under canopy 0"6 m aft of headrest (air) ('C) 30 34 35 38 38 39 37 38 1 38 .6
6 Port arm rest (surface) (C) 41 47 48 s0 47 51 51 51 47 46
7 Starboard armrest (surface) (C) 33 36 38 421 45 49 51 51 I 1 52
8 Air temperature box [in starboard footwell] (air) ('C) 25 26 28 30 32 33 35 36 37 37
9 Starboard. upper wing. outboard (surface) ('C) 33 36 37 4) 38 40 42 42 40 39

to Starboard, upper wing. inboard (surface) (C) 34 40 41 43 40 43 44 44 43 41
II Port. lower wing (surface) (C) 23 25 26 27 27 27 27 28 28 27
12 Black globe in cockpit (air) 30 35 37 40 39 41 41 4) 40 39
13 Port. upper wing, inboard (surface) ('C) 30 36 37 41 38 42 44 43 42 42
14 Upper fuselage 3 m aft of pilot (surface) ("C) 31 35 35 38 35 39 39 40 39 39
15 Upper fuselage 2 m aft of pilot (surface) ('C) 31 37 36 38 33 38 39 39 37 37
16 Upper fuselage, front (surface)(C) 43 53 51 56 43 58 59 59 56 56

Radiatior
17 Net radiation aircraft] (W/m

2
) 390 930 210 930 390 870 810 810 750 750

18 Net radiation [ground] (W/m2) 270 690 390 600 210 630 570 5)0 5)0 510
19 Wintld direction (0') Varying between 290' and 345
20 Wind speed(ms) 0.55 01 0.9 0-6 04 0.7 0.54 0.85 09. 105

Temperature
21 Outside air temperature ('C) 17 17 is 18 19 19 20 21 20 19

• ii iiV



APPENDIX 3

Test Records for a Cooled Aircraft

TABLE 3.1

Temperature and Environmental Conditions

Unshaded cockpit with cooling air-16.3.79

Time (h)
Measurements

1230 1240 1255 1305 1315 1325 1335 1345 1355

Cockpit conditions
Inlet air temp. ('C) - 0.0 0.0 0-0 0.0 0.0 -0.5 0.0 0-0
Outlet air temp. ( C) - 31.5 27.5 27.0 25.0 23.0 19.0 19.0 19-5
Black globe temp. ( C) 48.0 41.0 38-0 38.0 35.0 33.5 30.0 30.0 30.5
Head level temp. (est.*) ( C) 420 350 32-0 32.0 29-0 27.5 24.0 24.0 24-5
Air mass flow (g/s) - 94 94 94 95 95 95 95 95
Cooling effect" (W) - 2990 2610 2563 2398 2206 1871 1823 1871

Environmental conditions
Outside air temp. ( C) 27-5 27.8 27.4 26-0 27.5 27.5 27-5 27.8 27-0
Wind direction (-0) 210
Wind speed (m/s) 3-0

* Head level temperature is estimated by subtracting 6C from black globe temperature.
t Cooling effect - mrCp(To.t - Tin), where Cp 1 I-01 kJ/kg.

TABLE 3.2

Temperature and Environmental Conditions

Unshaded cockpit with cooling air-20.3.79

Time (h)
Measurements

1245 1300 1315 1330 1340 1350

Cockpit conditions
Inlet air temp. ('C) - -3-0 5.5 4.5 50 5.0
Outlet air temp. ( C) - 24.0 24-5 24.5 24.5 24.8
Black globe temp. ( C) 53.0 34.0 34-5 35-5 35-5 36.0
Head level temp. (est.*) (°C) 47.0 28-0 28.5 29.5 29-5 30.0
Air mass flow (g/s) - 100 100 100 100 100
Cooling effectt (W) - 2720 1910 2000 1910 1990

Environmental conditions
Outside air temp. ( C) 29.0 29.0 29.0 29.0 29.0 29-0
Wind direction (0")  330
Wind speed (m/s) 28

* Head level temperature is estimated by subtracting 6 C from black globe
temperature.

" Cooling effect = mrCp(Tout - Tin), where Cp = 1 01 kJ/kg.

'-A



TABLE 3.3

Temperature and Environmental Conditions

Shaded cockpit with cooling air-26.3.79

Time (h)
Measurements

1250 1305 1320 1330 1340 1350 1400 1410

Cockpit conditions
Inlet air temp. (C) - 10.5, 0 1-5 3.5 4-5 4.5 4.5
Outlet air temp. (-C) - 21-5 16.0 15.5 15.0 14-5 14.5 14.2
Black globe air temp. ('C) 27-5 22-0 16-0 15-0 15.0 14.5 14.5 14.2
Head level temp.(C) 25.5 20-5 14.5 13.5 14-0 13.0 13-0 13-0
Air mass flow (g/s) - 106 106 105 105 15 105I 106
Cooling effecti"(W) - 1070 1710 1490 1220 1060 1060 1040

Environmental conditions
Outside air temp. (C) 28.5 28,5 28.5 28.5 28-5 28-5 29-0 29.0
Wind direction (0) 350
Wind speed (m/s) 1.5

TABLE 3.4

Temperature and Environmental Conditions

Shaded cockpit with cooling air-29.3.79

Time (h)
Measurements

1230 1245 1300 1310 1320 1340 1345 1355 1405 1415 1425

Cockpit conditions
Inlet air temp. ( C) - 14.5 1.0, 7.5, 4.5 6.5 8-5 3.5 2.0 2.0 2.0
Outlet air temp. ( C) - 24 0 .17 5 18 5 17 5 15 5 15 5 14 0 13-5 13 0 13 0
Black globe temp. (C) 30-0 24.0 18.5 18.5 17.5 15.5 15-5 140, 135 13-0 13.0
Head level temp. ('C) 30.0 225 17.01 17.5 15'S 14.0 14.0 12.5 11.5 11.0111.0
Air mass flow (g/s) - 96 96 96 107 107 107 107 107 107 ! 107
Cooling effectt (W) - 940 704 1070 1400 970 754 1130 1240 1190 1190

En vironental conditions
Outside air temp. ('C) 28.5 28.5 29.0 29.0 29.0,29.0 29.5 29.5 29.0 29-0 29.0
Wind direction (0 340
Wind speed (m/s) 2.5

I _ __ _ _ __ _ _
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